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Abstract

Realistically animated fluids can add substantial realism to interactive applications such as virtual surgery sim-
ulators or computer games. In this paper we propose an interactive method based on Smoothed Particle Hydro-
dynamics (SPH) to simulate fluids with free surfaces. The method is an extension of the SPH-based technique
by Desbrun to animate highly deformable bodies. We gear the method towards fluid simulation by deriving the
force density fields directly from the Navier-Stokes equation and by adding a term to model surface tension effects.
In contrast to Eulerian grid-based approaches, the particle-based approach makes mass conservation equations
and convection terms dispensable which reduces the complexity of the simulation. In addition, the particles can
directly be used to render the surface of the fluid. We propose methods to track and visualize the free surface using
point splatting and marching cubes-based surface reconstruction. Our animation method is fast enough to be used
in interactive systems and to allow for user interaction with models consisting of up to 5000 particles.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism

1. Introduction

1.1. Motivation

Fluids (i.e. liquids and gases) play an important role in every
day life. Examples for fluid phenomena are wind, weather,
ocean waves, waves induced by ships or simply pouring of
a glass of water. As simple and ordinary these phenomena
may seem, as complex and difficult it is to simulate them.
Even though Computational Fluid Dynamics (CFD) is a well
established research area with a long history, there are still
many open research problems in the field. The reason for
the complexity of fluid behavior is the complex interplay of
various phenomena such as convection, diffusion, turbulence
and surface tension. Fluid phenomena are typically simu-
lated off-line and then visualized in a second step e.g. in
aerodynamics or optimization of turbines or pipes with the
goal of being as accurate as possible.

Less accurate methods that allow the simulation of fluid
effects in real-time open up a variety of new applications.
In the fields mentioned above real-time methods help to
test whether a certain concept is promising during the de-
sign phase. Other applications for real-time simulation tech-

Figure 1: Pouring water into a glass at 5 frames per second.

niques for fluids are medical simulators, computer games or
any type of virtual environment.

1.2. Related Work

Computational Fluid Dynamics has a long history. In 1822
Claude Navier and in 1845 George Stokes formulated the
famous Navier-Stokes Equations that describe the dynam-
ics of fluids. Besides the Navier-Stokes equation which de-
scribes conservation of momentum, two additional equa-
tions namely a continuity equation describing mass con-
servation and a state equation describing energy conserva-
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tion are needed to simulate fluids. Since those equations are
known and computers are available to solve them numeri-
cally, a large number of methods have been proposed in the
CFD literature to simulate fluids on computers.

Since about two decades, special purpose fluid simula-
tion techniques have been developed in the field of computer
graphics. In 1983 T. Reeves17 introduced particle systems as
a technique for modeling a class of fuzzy objects. Since then
both, the particle-based Lagrangian approach and the grid-
based Eulerian approach have been used to simulate fluids
in computer graphics. Desbrun and Cani2 and Tonnesen22

use particles to animate soft objects. Particles have also been
used to animate surfaces7, to control implicit surfaces23 and
to animate lava flows20. In recent years the Eulerian ap-
proach has been more popular as for the simulation of fluids
in general18, water 4, 3, 21, soft objects14 and melting effects1.

So far only a few techniques optimized for the use in in-
teractive systems are available. Stam’s method18 that is grid
based is certainly an important step towards real-time simu-
lation of fluids. For the special case of fluids that can be rep-
resented by height fields, interactive animation techniques
are available as well6.

Here we propose a particle-based approach based on
Smoothed Particle Hydrodynamics to animate arbitrary fluid
motion.

1.3. Our Contribution

We propose a method based on Smoothed Particles Hydro-
dynamics (SPH)9 to simulate fluids with free surfaces. Stam
and Fiume first introduced SPH to the graphics community
to depict fire and other gaseous phenomena19. Later, Des-
brun used SPH to animate highly deformable bodies2. We
extend his method focussing on the simulation of fluids. To
this end, we derive the viscosity and pressure force fields di-
rectly from the Navier-Stokes equation and propose a way
to model surface tension forces. For the purpose of interac-
tivity, we designed new special purpose smoothing kernels.
Surface tracking and surface rendering at interactive rates
are difficult problems for which we describe possible solu-
tions.

2. Smoothed Particle Hydrodynamics

Although Smoothed Particle Hydrodynamics (SPH) was de-
veloped by Lucy9 and Gingold and by Monaghan5 for the
simulation of astrophysical problems, the method is general
enough to be used in any kind of fluid simulation. For in-
troductions to SPH we refer the reader to Monaghan10 or
Münzel13.

SPH is an interpolation method for particle systems. With
SPH, field quantities that are only defined at discrete parti-
cle locations can be evaluated anywhere in space. For this
purpose, SPH distributes quantities in a local neighborhood

of each particle using radial symmetrical smoothing kernels.
According to SPH, a scalar quantity A is interpolated at loca-
tion r by a weighted sum of contributions from all particles:

AS(r) = ∑
j

m j
A j

ρ j
W (r− r j,h), (1)

where j iterates over all particles, m j is the mass of particle
j, r j its position, ρ j the density and A j the field quantity at
r j .

The function W (r,h) is called the smoothing kernel with
core radius h. Since we only use kernels with finite support,
we use h as the radius of support in our formulation. If W is
even (i.e. W (r,h) = W (−r,h)) and normalized, the interpo-
lation is of second order accuracy. The kernel is normalized
if

∫

W (r)dr = 1. (2)

The particle mass and density appear in Eqn. (1) because
each particle i represents a certain volume Vi = mi/ρi. While
the mass mi is constant throughout the simulation and, in our
case, the same for all the particles, the density ρi varies and
needs to be evaluated at every time step. Through substitu-
tion into Eqn. (1) we get for the density at location r:

ρS(r) = ∑
j

m j
ρ j

ρ j
W (r− r j,h) = ∑

j
m jW (r− r j,h). (3)

In most fluid equations, derivatives of field quantities ap-
pear and need to be evaluated. With the SPH approach, such
derivatives only affect the smoothing kernel. The gradient of
A is simply

∇AS(r) = ∑
j

m j
A j

ρ j
∇W (r− r j,h) (4)

while the Laplacian of A evaluates to

∇2AS(r) = ∑
j

m j
A j

ρ j
∇2W (r− r j,h). (5)

It is important to realize that SPH holds some inherent prob-
lems. When using SPH to derive fluid equations for particles,
these equations are not guaranteed to satisfy certain physi-
cal principals such as symmetry of forces and conservation
of momentum. The next section describes our SPH-based
model and techniques to solve these SPH-related problems.

3. Modelling Fluids with Particles

In the Eulerian (grid based) formulation, isothermal fluids
are described by a velocity field v, a density field ρ and a
pressure field p. The evolution of these quantities over time
is given by two equations. The first equation assures conser-
vation of mass

∂ρ
∂t

+∇· (ρv) = 0, (6)
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while the Navier-Stokes equation15 formulates conservation
of momentum

ρ
(

∂v
∂t

+v ·∇v
)

= −∇p+ρg+µ∇2v, (7)

where g is an external force density field and µ the viscosity
of the fluid. Many forms of the Navier-Stokes equation ap-
pear in the literature. Eqn. (7) represents a simplified version
for incompressible fluids.

The use of particles instead of a stationary grid simplifies
these two equations substantially. First, because the number
of particles is constant and each particle has a constant mass,
mass conservation is guaranteed and Eqn. (6) can be omit-
ted completely. Second, the expression ∂v/∂t +v ·∇v on the
left hand side of Eqn. (7) can be replaced by the substantial
derivative Dv/Dt. Since the particles move with the fluid,
the substantial derivative of the velocity field is simply the
time derivative of the velocity of the particles meaning that
the convective term v ·∇v is not needed for particle systems.

There are three force density fields left on the right hand
side of Eqn. (7) modeling pressure (−∇p), external forces
(ρg) and viscosity (µ∇2v). The sum of these force density
fields f = −∇p + ρg + µ∇2v determines the change of mo-
mentum ρ Dv

Dt of the particles on the left hand side. For the
acceleration of particle i we, thus, get:

ai =
dvi

dt
=

fi

ρi
, (8)

where vi is the velocity of particle i and fi and ρi are the force
density field and the density field evaluated at the location of
particle i, repectively. We will now describe how we model
the force density terms using SPH.

3.1. Pressure

Application of the SPH rule described in Eqn. (1) to the pres-
sure term −∇p yields

fpressure
i = −∇p(ri) = −∑

j
m j

p j

ρ j
∇W (ri − r j,h). (9)

Unfortunately, this force is not symmetric as can be seen
when only two particles interact. Since the gradient of the
kernel is zero at its center, particle i only uses the pressure of
particle j to compute its pressure force and vice versa. Be-
cause the pressures at the locations of the two particles are
not equal in general, the pressure forces will not be symmet-
ric. Different ways of symmetrization of Eqn. (9) have been
proposed in the literature. We suggest a very simple solution
which we found to be best suited for our purposes of speed
and stability

fpressure
i = −∑

j
m j

pi + p j

2ρ j
∇W (ri − r j,h).. (10)

The so computed pressure force is symmetric because it uses
the arithmetic mean of the pressures of interacting particles.

Since particles only carry the three quantities mass, posi-
tion and velocity, the pressure at particle locations has to be
evaluated first. This is done in two steps. Eqn. (3) yields the
density at the location of the particle. Then, the pressure can
be computed via the ideal gas state equation

p = kρ, (11)

where k is a gas constant that depends on the temperature.
In our simulations we use a modified version of Eqn. (11)
suggested by Desbrun2

p = k(ρ−ρ0), (12)

where ρ0 is the rest density. Since pressure forces depend on
the gradient of the pressure field, the offset mathematically
has not effect on pressure forces. However, the offset does
influence the gradient of a field smoothed by SPH and makes
the simulation numerically more stable.

3.2. Viscosity

Application of the SPH rule to the viscosity term µ∇2v again
yields asymmetric forces

fviscosity
i = µ∇2v(ra) = µ∑

j
m j

v j

ρ j
∇2W (ri − r j,h). (13)

because the velocity field varies from particle to particle.
Since viscosity forces are only dependent on velocity differ-
ences and not on absolute velocities, there is a natural way
to symmetrize the viscosity forces by using velocity differ-
ences:

fviscosity
i = µ∑

j
m j

v j −vi

ρ j
∇2W (ri − r j,h). (14)

A possible interpretation of Eqn. (14) is to look at the neigh-
bors of particle i from i’s own moving frame of reference.
Then particle i is accelerated in the direction of the relative
speed of its environment.

3.3. Surface Tension

We model surface tension forces (not present in Eqn. (7))
explicitly based on ideas of Morris12. Molecules in a fluid
are subject to attractive forces from neighboring molecules.
Inside the fluid these intermolecular forces are equal in all
directions and balance each other. In contrast, the forces act-
ing on molecules at the free surface are unbalanced. The net
forces (i.e. surface tension forces) act in the direction of the
surface normal towards the fluid. They also tend to mini-
mize the curvature of the surface. The larger the curvature,
the higher the force. Surface tension also depends on a ten-
sion coefficient σ which depends on the two fluids that form
the surface.

The surface of the fluid can be found by using an addi-
tional field quantity which is 1 at particle locations and 0

c© The Eurographics Association 2003.

156



Müller et al / Particle-Based Fluid Simulation for Interactive Applications

everywhere else. This field is called color field in the litera-
ture. For the smoothed color field we get:

cS(r) = ∑
j

m j
1
ρ j

W (r− r j,h). (15)

The gradient field of the smoothed color field

n = ∇cs (16)

yields the surface normal field pointing into the fluid and the
divergence of n measures the curvature of the surface

κ =
−∇2cs

|n|
. (17)

The minus is necessary to get positive curvature for con-
vex fluid volumes. Putting it all together, we get for the sur-
face traction:

tsurface = σκ n
|n|

(18)

To distribute the surface traction among particles near the
surface and to get a force density we multiply by a normal-
ized scalar field δs = |n| which is non-zero only near the
surface. For the force density acting near the surface we get

fsurface = σκn = −σ∇2cS
n
|n|

(19)

Evaluating n/|n| at locations where |n| is small causes nu-
merical problems. We only evaluate the force if |n| exceeds
a certain threshold.

3.4. External Forces

Our simulator supports external forces such as gravity, col-
lision forces and forces caused by user interaction. These
forces are applied directly to the particles without the use of
SPH. When particles collide with solid objects such as the
glass in our examples, we simply push them out of the ob-
ject and reflect the velocity component that is perpendicular
to the object’s surface.

3.5. Smoothing Kernels

Stability, accuracy and speed of the SPH method highly de-
pend on the choice of the smoothing kernels. The kernels
we use have second order interpolation errors because they
are all even and normalized (see Fig. 2). In addition, kernels
that are zero with vanishing derivatives at the boundary are
conducive to stability. Apart from those constraints, one is
free to design kernels for special purposes. We designed the
following kernel

Wpoly6(r,h) =
315

64πh9

{

(h2 − r2)3 0 ≤ r ≤ h
0 otherwise

(20)

and use it in all but two cases. An important feature of this
simple kernel is that r only appears squared which means
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Figure 2: The three smoothing kernels Wpoly6, Wspiky and
Wviscosity (from left to right) we use in our simulations. The
thick lines show the kernels, the thin lines their gradients
in the direction towards the center and the dashed lines the
Laplacian. Note that the diagrams are differently scaled. The
curves show 3-d kernels along one axis through the center
for smoothing length h = 1.

that is can be evaluated without computing square roots in
distance computations. However, if this kernel is used for the
computation of the pressure forces, particles tend to build
clusters under high pressure. As particles get very close to
each other, the repulsion force vanishes because the gradient
of the kernel approaches zero at the center. Desbrun2 solves
this problem by using a spiky kernel with a non vanishing
gradient near the center. For pressure computations we use
Debrun’s spiky kernel

Wspiky(r,h) =
15

πh6

{

(h− r)3 0 ≤ r ≤ h
0 otherwise,

(21)

that generates the necessary repulsion forces. At the bound-
ary where it vanishes it also has zero first and second deriva-
tives.

Viscosity is a phenomenon that is caused by friction and,
thus, decreases the fluid’s kinetic energy by converting it into
heat. Therefore, viscosity should only have a smoothing ef-
fect on the velocity field. However, if a standard kernel is
used for viscosity, the resulting viscosity forces do not al-
ways have this property. For two particles that get close to
each other, the Laplacian of the smoothed velocity field (on
which viscosity forces depend) can get negative resulting in
forces that increase their relative velocity. The artifact ap-
pears in coarsely sampled velocity fields. In real-time appli-
cations where the number of particles is relatively low, this
effect can cause stability problems. For the computation of
viscosity forces we, thus, designed a third kernel:

Wviscosity(r,h) =
15

2πh3

{

− r3

2h3 + r2

h2 + h
2r −1 0 ≤ r ≤ h

0 otherwise.
(22)

whose Laplacian is positive everywhere with the following
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additional properties:

∇2W (r,h) =
45
πh6 (h− r)

W (|r| = h,h) = 0

∇W (|r| = h,h) = 0

The use of this kernel for viscosity computations increased
the stability of the simulation significantly allowing to omit
any kind of additional damping.

3.6. Simulation

For the integration of the Eqn. (8) we use the Leap-Frog
scheme16. As a second order scheme for which the forces
need to be evaluation only once, it best fits our purposes and
in our examples allows time steps up to 10 milliseconds. For
the examples we used constant time steps. We expect even
better performance if adaptive time steps are used based on
the Courant-Friedrichs-Lewy condition2.

4. Surface Tracking and Visualization

The color field cS and its gradient field n = ∇cS defined in
section 3.3 can be used to identify surface particles and to
compute surface normals. We identify a particle i as a surface
particle if

|n(ri)| > l, (23)

where l is a threshold parameter. The direction of the surface
normal at the location of particle i is given by

−n(ri). (24)

4.1. Point Splatting

We now have a set of points with normals but without
connectivity information. This is exactly the type of infor-
mation needed for point splatting techniques24. However,
these methods are designed to work with point clouds ob-
tained from scanners that typically contain at least 10,000
to 100,000 points. We only use a few thousand particles a
fraction of which are identified as being on the surface. Still
surface splatting yields plausible results as shown in the re-
sults section.

We are currently working on ways to upsample the sur-
face of the fluid. Hereby, the color field information of sur-
face particles is interpolated to find locations for additional
particles on the surface only used for rendering.

4.2. Marching Cubes

Another way to visualize the free surface is by rendering an
iso surface of the color field cS. We use the marching cubes
algorithm8 to triangulate the iso surface. In a grid fixed in
space the cells that contain the surface are first identified.

We start searches from all the cells that contain surface par-
ticles and from there recursively traverse the grid along the
surface. With the use of a hash table we make sure that the
cells are not visited more than once. For each cell identified
to contain the surface, the triangles are generated via a fast
table lookup.

5. Implementation

Since the smoothing kernels used in SPH have finite support
h, a common way to reduce the computational complexity is
to use a grid of cells of size h. Then potentially interacting
partners of a particle i only need to be searched in i’s own
cell and all the neighboring cells. This technique reduces the
time complexity of the force computation step from O(n2)
to O(nm), m being the average number of particles per grid
cell.

With a simple additional trick we were able to speed
up the simulation by an additional factor of 10. Instead of
storing references to particles in the grid, we store copies
of the particle objects in the grid cells (doubling memory
consumption). The reason for the speed up is the prox-
imity in memory of the information needed for interpola-
tion which dramatically increases the cash hit rate. Further
speedup might be possible through even better clustering us-
ing Hilbert space filling curves11. The data structure for fast
neighbor searches is also used for surface tracking and ren-
dering.

6. Results

The water in the glass shown in Fig. 3 is sampled with 2200
particles. An external rotational force field causes the fluid
to swirl. The first image (a) shows the individual particles.
For the second image (b), point splatting was used to ren-
der the free surface only. In both modes, the animation runs
at 20 frames per second on a 1.8 GHz Pentium IV PC with
a GForce 4 graphics card. The most convincing results are
produced when the iso surface of the color field is visual-
ized using the marching cubes algorithm as in image (c).
However, in this mode the frame rate drops to 5 frames per
second. Still this frame rate is significantly higher than the
one of most off-line fluid simulation techniques and with the
next generation of graphics hardware, real-time performance
will be possible.

The image sequence shown in Fig. 4 demonstrates inter-
action with the fluid. Through mouse motion, the user gen-
erates an external force field that cause the water to splash.
The free surface is rendered using point splatting while iso-
lated particles are drawn as single droplets. The simulation
with 1300 particles runs at 25 frames per second.

For the animation shown in Fig. 5 we used 3000 particles
and rendered the surface with the marching cubes technique
at 5 frames per second.
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7. Conclusions and Future Work

We have presented a particle-based method for interactive
fluid simulation and rendering. The physical model is based
on Smoothed Particle Hydrodynamics and uses special pur-
pose kernels to increase stability and speed. We have pre-
sented techniques to track and render the free surface of flu-
ids. The results are not as photorealistic yet as animations
computed off-line. However, given that the simulation runs
at interactive rates instead of taking minutes or hours per
frame as in today’s off-line methods, the results are quite
promising.

While we are quite content with the physical model, track-
ing and rendering of the fluid surface in real time certainly
remains an open research problem. In the future we will in-
vestigate upsampling techniques as well as ways to increase
the performance of the marching cubes-based algorithm.
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(a) (b) (c)

Figure 3: A swirl in a glass induced by a rotational force field. Image (a) shows the particles, (b) the surface using point
splatting and (c) the iso-surface triangulated via marching cubes.

Figure 4: The user interacts with the fluid causing it to splash.

Figure 5: Pouring water into a glass at 5 frames per second.
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